Onion Maggot
Karen Delahaut, UW-Madison IPM Program

Onion maggots (Hylemya antiqua) are tiny maggots that feed below ground on onion bulbs, producing tunnels and possibly introducing disease organisms into the plant. It is frequently the most serious onion pest, particularly where continuous production is practiced. Onion maggots are highly host-specific to plants in the onion family including onions, leeks, shallots, garlic, and chives.

Appearance Adult onion maggots are slender, grey, large-winged, bristly flies that resemble houseflies, but are only ¼ inch long. Their wings are held overlapped over their bodies while at rest. Eggs are elongated and white and are laid at the base of the plant. There are three cream-colored, larval stages called maggots that develop over the course of 2-3 weeks.

Symptoms and Effects Onion maggot larvae feed on the below-ground hypocotyl tissue of seedlings, resulting in a variety of damage symptoms. Larval feeding may kill seedlings, therefore, poor plant stands may indicate an onion maggot problem. In larger plants, larvae may tunnel into the bulb causing plants to become flaccid and yellow. Onion maggot feeding can introduce soft rot bacteria into the plant.

Life Cycle Onion maggots overwinter as pupae in the soil associated with onion culls in the field or cull piles. Adults emerge around mid-May and mate over a three day period after which they begin laying tiny, white eggs at the base of the plant. The larvae, upon emergence, crawl beneath the leaf sheath and enter the bulb. The onion maggot pupates in the soil and the next generation of adults appear 3-4 weeks later.

There are three generations per year. The first generation is often the largest and the most damaging. The third generation attacks onions in mid-August shortly before harvest. Feeding damage at this time can lead to storage rots as onion maggots introduce bacteria into feeding wounds. Cool, wet weather favors the development of onion maggots while hot, dry weather is detrimental to its survival.
Scouting Suggestions Once the damage has been detected, it’s too late to take control actions. Therefore, action thresholds for foliar insecticide applications are based on adult emergence. Peak emergence of each generation can be forecasted using degree day accumulations. Begin accumulating degree days when the ground thaws in the spring. A base temperature of 40°F is used. The first three generations will occur when totals of 680DD\(_{40}\) (spring), 1950DD\(_{40}\) (summer), and 3230DD\(_{40}\) (fall) respectively, have been reached.

Control

Cultural: Effective onion maggot control programs should include the following elements to reduce populations, avoid insecticide resistance, and achieve control. Onion crops should be rotated whenever possible to provide at least ½ mile between new seedings and previous crops or cull piles. This may not always be possible on smaller farms. Overwintering populations of onion maggots can be reduced through the destruction of crop debris and removal of culls from the field. Onion sets should be planted one week before fly emergence is predicted.

Chemical: Preventative soil insecticide applications are recommended for the control of the first generation larvae if damage from the previous year’s crop exceeds 5-10%. Foliar insecticide applications should be avoided since they are generally ineffective on adult populations that move in and out of fields. Resistance has been documented in onion maggots and therefore, pesticides must be selected which don’t exacerbate insecticide resistance. For a list of registered insecticides, consult UWEX publication A3422 “Commercial Vegetable Production in Wisconsin”.

For pesticide recommendations: See UW-Extension Bulletin A3422 or contact your County Extension Agent.